
Towards a Formal Foundation for
Blockchain ZK Rollups

Stefanos Chaliasos
Imperial College London

London, UK
zkSecurity

New York, USA

Denis Firsov
Input Output

Tallinn, Estonia
Tallinn University of Technology

Tallinn, Estonia

Benjamin Livshits
Imperial College London

London, UK

Abstract
Blockchains like Bitcoin and Ethereum have revolutionized digital
transactions, yet scalability issues persist. Layer 2 solutions, such as
validity proof Rollups (ZK-Rollups), aim to address these challenges
by processing transactions off-chain and validating them on the
main chain. However, concerns remain about security and censor-
ship resistance, particularly regarding centralized control in Layer 2
and inadequate mechanisms for enforcing these properties through
Layer 1 smart contracts. In their current form, L2s are susceptible
to multisig attacks that can lead to total user funds loss. This work
presents a formal analysis using the Alloy specification language
to examine and design key Layer 2 functionalities, including forced
transaction queues, safe blacklisting, and upgradeability. Through
this analysis, we identify pitfalls in existing designs and introduce
an enhanced model that has been model-checked to be correct.
Finally, we propose a complete end-to-end methodology to ana-
lyze rollups’ security and censorship resistance based on manually
translating Alloy properties to property-based testing invariants,
setting new standards.

CCS Concepts
• Security and privacy → Formal security models; Security
requirements; Domain-specific security and privacy architectures.

Keywords
Blockchain Security; Scalability; Zero-Knowledge Proofs

ACM Reference Format:
Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits. 2025. Towards a
Formal Foundation for Blockchain ZK Rollups. In Proceedings of the 2025
ACM SIGSAC Conference on Computer and Communications Security (CCS
’25), October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3719027.3765115

1 Introduction
Blockchain technology, exemplified by major chains such as Bit-
coin [28] and Ethereum [36], has revolutionized finance and various
other fields by enabling decentralized transactions. Despite its in-
novations, adopting these technologies has highlighted significant
scalability challenges. The limited transaction throughput of these

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765115

networks has led to ongoing research and development of various
scalability solutions within the community [41].

Two primary strategies have emerged to enhance scalability.
The first involves developing new blockchain architectures from
scratch, designed for higher transaction throughput than traditional
platforms like Ethereum [3, 37], often at the expense of reduced
security and network effects. The second strategy focuses on Layer
2 (L2) solutions, particularly rollups, which have become prominent
in practise [31]. Rollups enhance scalability by executing transac-
tions on a secondary blockchain (L2) and subsequently posting the
state roots and transaction data back to the primary blockchain
(L1). This approach allows rollups to inherit the security properties
of the underlying L1 through the use of validity proofs [2], i.e.,
Zero-Knowledge Proofs (ZKPs) [12], or fraud proofs [20].

However, submitting transaction batches for verification by L1
contracts does not fully secure L2 users. Centralized control of L1
contracts through mechanisms like multisignature wallets poses
some significant security risks. If a malicious party gains control
of the majority of the keys, they could potentially redirect or steal
funds. Notably, even if a proper governance protocol is in place, the
issues that might occur from instant upgrades still hold. Further,
the potential for censorship by L2 operators poses another major
challenge, as users could be prevented from executing transactions.

1.1 Motivating Examples
The compromise of multisigs has historically caused the greatest
loss of funds in blockchains [40]. This was most recently demon-
strated by the sophisticated exploit of ByBit’s multisig,1 resulting
in the largest attack in blockchain history, with over $1 billion lost.
No multisig setup can be considered fully secure. Critically, rollups
today depend almost entirely on multisigs to operate their core L1
contracts, often without enforced or sufficient safety mechanisms.

As a result, current rollups do not truly inherit the security
guarantees of their underlying L1s; instead, they depend on a small
set ofmultisig keys, making them vulnerable to attacks that threaten
their long-term viability. Centralized control over rollups further
introduces serious censorship risks, as recent incidents illustrate.

In this work, we take up the challenge of formally specifying the
mechanisms rollups must implement to inherit both the security
and censorship resistance of L1. The following incidents highlight
the urgent need for robust forced transaction queues, secure up-
gradeability mechanisms, and carefully controlled blacklist policies.
Blast incident.A recent incident involving the Blast rollup2, which
at the time held over $3 billion in total value locked (TVL), highlights
1https://www.elliptic.co/blog/bybit-hack-largest-in-history
2https://x.com/miszke_eth/status/1775196752993255613

https://orcid.org/0000-0001-5414-4120
https://orcid.org/0000-0003-1267-7898
https://orcid.org/0000-0002-4921-8452
https://doi.org/10.1145/3719027.3765115
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765115
https://www.elliptic.co/blog/bybit-hack-largest-in-history
https://x.com/miszke_eth/status/1775196752993255613

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

439 address from = msg.sender;
440 if (msg.sender != tx.origin) {
441 from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
442 }
443 // ...
444 require(
445 from != 0x6E8836F050A315611208A5CD7e228701563D09c5 &&
446 from != 0xc207Fa4b17cA710BA53F06fEFF56ca9d315915B7 &&
447 from != 0xbf9ad762DBaE603BC8FC79DFD3Fb26f2b9740E87
448);

Figure 1: Censoring changes in the Blast OptimismPortal.sol.

these issues. Following a major exploit in one of the protocols
deployed on Blast, the operators quickly intervened to censor the
attacker by upgrading the system. Although well-intentioned, this
action highlighted that L2s currently do not offer the same level
of security and censorship resistance as their underlying L1, as
rapid changes could lead to substantial asset losses. Further, it
highlights the upgrade power of the rollup operator without any
safetymechanism in place to protect users. The code change3 shown
in Figure 1 highlights the rapidly deployed contract changes used
by the Blast rollup operator to censor the attacker.

dydx concerns. Concerns regarding the excessive authority of
the rollup operator to execute a rug pull [30] on its users apply
to the dydx rollup, which is controlled via a 3-out-of-5 multisig,
which means that only three rogue parties are enough to hijack the
entire rollup and lead to an immediate code upgrade. Citing the
postmortem, 4 this issue could lead to draining the rollup.

Anyone who wants to upgrade the Layer 2 contract must be subject to the time lock delay
limit, and the contract upgrade should take effect later than the mandatory withdrawal. For
example, the contract upgrade of dydx now has a delay of at least 48 hours, so the delay for
the forced withdrawal/escape hatch mode to take effect should be reduced to within 48 hours.
In this way, after users discover that the dYdX project team wants to incorporate malicious
code into the new version of the contract, they can withdraw their assets from Layer 2 to
Layer 1 before the contract is updated.

In the rest of this paper, we show that the situation is even more
complex: as demonstrated in Section 4.5, a timelock alone is insuffi-
cient; a secure upgrade process that the rollup operator must follow,
regardless of who controls the upgrade decision, is essential.

Linea hack. In June 2024, the Linea chain was halted in response
to a project on Linea that was compromised, and some addresses
were black-listed. Citing the Linea team’s communications56; this
issue had similar implications to the Blast incident:

The sequencer was paused from block 5081800 and 5081801. During this pause, we gave
the @Velocorexyz time team to support their efforts of triaging the vulnerability. We also
censored the hacker’s addresses. This significantly reduced the ecosystem impact on Linea
users. ... Linea’s team made a decision to halt block production by pausing the sequencer
and censor attacker addresses to protect the users and builders in our ecosystem. Like other
L2s, we are still in the "training wheels" phase of existence, giving us safeguards to use. ...
Meanwhile, teams at Velocore and Linea have requested to CEX to freeze the exploited funds,
and Velocore is setting up an onchain negotiation process.

3https://etherscan.io/address/0xA280aEBF81c917DbD2aA1b39f979dfECEc9e4
391#code#F1#L449
4https://www.odaily.news/en/post/5191266
5https://x.com/LineaBuild/status/1797283402745573837
6https://cryptoslate.com/linea-under-scrutiny-for-unilateral-block-
production-halt-amid-velocore-hack/

1.2 Paper Overview
In this work, we are the first, to the best of our knowledge, to
formalize and analyze essential mechanisms that L2 rollups must
implement to truly inherit the security and censorship resistance
of their underlying L1 blockchains. Using the Alloy specification
language, we define and test critical security properties these mech-
anisms should exhibit. Our framework aims to guide developing
and testing robust L2 mechanisms, providing concrete security
guarantees to L2 users. We focus on ZK-Rollups due to their simple
L1 logic, and explore the following critical mechanisms:

ForcedQueue.Amechanism implemented in L1 contracts allowing
users to bypass potential L2 censorship by submitting transactions
directly to the L1. This mechanism is supported, or planned to
be supported, by some of the top rollups, both optimistic and ZK-
Rollups, as shown on the L2beat Risk page.7

Blacklisting. Recognizing that strong guarantees of the previous
mechanism could lead to regulatory issues, we propose a secure
mechanism for enforcing blacklisting policies. This mechanism
prevents immediate blocking of users, as highlighted in Section 1.1,
and should ideally be updated through a governance process.

Upgradeability.We outline a secure approach to upgrading system
components that preserves user security and is compatible with pre-
vious mechanisms. Recent rollup incidents further justify the need
for secure upgrades. We also highlight common pitfalls in the state-
of-the-art upgradeability mechanisms and demonstrate potential
vulnerabilities through counter-example-driven reasoning.

In this work, we introduce mechanisms grounded in formal mod-
eling of rollup protocols designed to mitigate issues such as those
discussed in Section 1.1. Specifically, we describe a safe upgrade-
ability mechanism that is required to resolve all three examples
(Section 4.5). Additionally, for scenarios outlined in the first and
third examples, we describe a secure blacklisting mechanism (Sec-
tion 4.4) that further helps address the issues.

1.3 Contributions
• Formal model for ZK-Rollups: Together with a threat
model (Section 3), we introduce the first formal model for
ZK Rollup smart contracts operating on Layer 1 blockchains,
responsible for the security of L2 (Section 4.2). This model
is designed to be both adaptable and extensible, facilitating
comprehensive analyses of core design properties essential
for the development of secure ZK-Rollups. This model aims
to guide implementers and operators of ZK-Rollups.

• Analysis of key mechanisms: We conduct a detailed anal-
ysis of three essential mechanisms integral to ZK-Rollups:
the forced queue, safe blacklisting, and upgradeability (Sec-
tion 4). Our analysis identifies common design pitfalls and
offers robust designs that integrate these mechanisms se-
curely, ensuring they function correctly. We also outline
security properties that each mechanism must satisfy. We
aim to provide bounded model-checked models for these
mechanisms as opposed to post-factum analysis of either
code or designs.

7https://l2beat.com/scaling/risk

https://etherscan.io/address/0xA280aEBF81c917DbD2aA1b39f979dfECEc9e4391#code#F1#L449
https://etherscan.io/address/0xA280aEBF81c917DbD2aA1b39f979dfECEc9e4391#code#F1#L449
https://www.odaily.news/en/post/5191266
https://x.com/LineaBuild/status/1797283402745573837
https://cryptoslate.com/linea-under-scrutiny-for-unilateral-block-production-halt-amid-velocore-hack/
https://cryptoslate.com/linea-under-scrutiny-for-unilateral-block-production-halt-amid-velocore-hack/
https://l2beat.com/scaling/risk

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

• Evaluation of state-of-the-art mechanisms: Using our
Alloy model, we analyze current ZK Rollup designs, high-
lighting issues in the design of upgrade policies of one rollup
with concrete counterexamples (Section 5.1). We show that
our proposed upgradeability mechanism is secure, setting a
new standard for ZK Rollup security. We also discuss how
the Alloy models can be used to guide the verification/test-
ing of the implementation of the proposed mechanisms and
discuss the instantiation of this methodology to test Scroll’s
implementation (Section 5.2).

We share our Alloy code at the following location: github.com/Ste
fanosChaliasos/zk-rollup-security, and the implementation
of property-based testing for Scroll at: https://github.com/Ste
fanosChaliasos/scroll-contracts/.
Note on analyzing optimistic rollups. In this work, we focus
on ZK-Rollups rather than optimistic rollups. Extending our for-
mal model to optimistic rollups would require accurately modeling
the fraud-proof mechanisms, including challenge periods, dispute
resolution games, and fault proofs, significantly complicating the
on-chain logic. These mechanisms are complex to model formally
and are beyond the scope of this work that focuses on the mecha-
nisms required to be implemented by rollups to inherit the security
and censorship resistance of the L1. For this reason, we leave the
formal modeling and analysis of optimistic rollups as an important
direction for future work.

2 Background
2.1 Blockchain Scalability and ZK-Rollups
Blockchain scalability has been a persistent challenge, particularly
for established networks like Ethereum [36], which processes only
tens of transactions per second (TPS).8 The scalability trilemma [25]
posits that blockchain systems cannot simultaneously achieve scal-
ability, decentralization, and security without compromises. This
has led to efforts to enhance scalability, focusing on two primary
strategies: base layer scaling (L1) and Layer 2 (L2) scaling solutions.
Base layer scaling, which includes techniques such as sharding [34]
and novel consensus protocols [23], involves either the modifica-
tion of existing blockchains – a complex and daunting task – or
the development of new blockchain architectures. While modern
blockchains like Solana [37] and Sui [3] have demonstrated success,
they often lack the established security, liquidity, and comprehen-
sive ecosystem found in legacy blockchains like Ethereum.9

Rollups [31] have emerged as hybrid L2 solutions, distinguishing
themselves by offloading computation off-chain while retaining
and validating data on-chain, thus addressing the data availability
issue while inheriting L1’s security. Rollups batch and execute
transactions on an L2 blockchain and submit the results into L1.

The execution of transactions in the L2 instead of L1 allows
rollups to process significantly more transactions per second than
their L1 counterparts. By submitting a single L1 transaction for
a batch, which might include up to 4K L2 transactions at the mo-
ment10, to the underlying blockchain, rollups not only scale the

8https://l2beat.com/scaling/summary
9As of 14/4/2025, Ethereum has 51.66% of the total TVL for all chains, according
to https://defillama.com/chains.
10That is the current batch size for zkEsync Era.

Force TX

EOA

TX

Commit Batch

Sequencer

Batch Proof

ProverBatch

L1 Blockchain

ZK-Rollup

Rollup Contract

CommitBatch
VerifyBatch
ForceTransaction
...

Figure 2: High-level architecture overview of ZK-Rollups.
EOA: Externally owned address.

total TPS but also ensure data availability and inherit the security
properties of the L1 network. Altering the L2 state recorded on L1
would require breaking substantial security, which would be both
difficult and costly. This architecture enables rollups to offer an
efficient and secure scaling solution for legacy blockchains. This
model, i.e., rollup-centric scaling, has gained traction as the princi-
pal method for scaling Ethereum, with two predominant variants:
optimistic rollups [20] and ZK-Rollups [2].11

Optimistic rollups rely on a system of trust, assuming transac-
tions are valid unless challenged, which makes the implementation
of the L2 simpler but introduces delays and adds complexity to
rollup’s contracts logic due to the fraud-proof mechanism. In con-
trast, ZK-Rollups use ZKPs to validate transactions in the L1 as
soon as a proof has been created off-chain and submitted to the
L1 contracts, ensuring faster finality but a higher computational
and complexity cost in the L2 level. While Optimistic rollups are
generally easier to implement, they suffer from potential delays in
withdrawals (currently, most L2s apply a 7-day long challenge pe-
riod); ZK-Rollups, on the other hand, offer faster finality and more
compression opportunities (e.g., state diffs — not all transaction
data need to be posted in the L1) to the data submitted to the L1,
leading to smaller costs.

Components of ZK-Rollups.As illustrated in Figure 2, ZK-Rollups
consist of several key L2 components, including the Sequencer and
the Prover. The Sequencer is responsible for processing, ordering,
and executing transactions into batches. Although currently often
centralized, there is ongoing research aimed at decentralizing this
component to enhance system trustworthiness and resilience [26].
The Prover, on the other hand, generates cryptographic proofs of
the correctness of these batches. Note that both components can be
split into various other components (e.g., executor, L1-L2 relayer,
and prover coordinator). The rollup’s smart contracts, deployed on
the L1, are essential to the overall architecture, executing various
critical operations. These contracts must be analyzed to determine
if they meet the properties detailed in Section 3.

11As of 14/4/2025, rollups have more than 33B USD TVL according to https://l2be
at.com.

github.com/StefanosChaliasos/zk-rollup-security
github.com/StefanosChaliasos/zk-rollup-security
https://github.com/StefanosChaliasos/scroll-contracts/
https://github.com/StefanosChaliasos/scroll-contracts/
https://l2beat.com/scaling/summary
https://defillama.com/chains
https://l2beat.com
https://l2beat.com

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

L1 Smart Contract Operations. L1 contracts are used to (i) com-
mit the transaction batches prepared by the Sequencer, which in-
cludes posting transaction data necessary for proof generation,
verification, and reproduction of the L2 state. L1 contracts also (ii)
verify the cryptographic proofs produced by the Prover to ensure
that all transactions in a batch are correctly executed. Further, (iii)
in cases where transactions need to be pushed through despite
potential censorship, downtime, or adversarial actions by the L2
operators, the L1 contracts can enforce transactions. Smart contracts
on L1 also (iv)manage protocol upgrades, which can include changes
to the rollup’s operational logic or security parameters, ensuring
that upgrades occur smoothly without compromising ongoing op-
erations or security. Finally, (v) these contracts manage cross-layer
transactions for depositing and withdrawing from the L2.

Transaction lifecycle in ZK-Rollups. The process begins when
a user signs and submits a transaction to the L2 network, marking
it as Pending. It quickly becomes Preconfirmed once the sequencer
processes and includes the transaction in a block. The transaction
then becomes Committed when included in a batch that is submitted
to the L1 contract, which allows for reconstruction and verification
of the L2 state based on data posted to L1. Finally, the transaction
reaches the Verified/Finalized stage when the batch’s proof is vali-
dated by the L1 contract, ensuring the transaction and its associated
state are immutable and secure on L2. Additionally, transactions
can also be submitted directly through the L1 contracts in scenarios
where L2 operators may be censoring transactions or in cases of
L2 downtime, ensuring robustness against operational failures or
malicious activities.

2.2 Formal Modeling of Software Design
Formal modeling enhances the correctness and robustness of soft-
ware systems through a rigorous analysis of their designs. By provid-
ing a precise mathematical description, formal modeling facilitates
the verification of properties and behaviors before implementation,
thereby reducing errors and improving system reliability.

Alloy [16, 17] is a declarative specification language using first-
order relational logic to model complex systems succinctly, ideal
for expressing constraints and behaviors in software designs. The
Alloy Analyzer automates checking these models against specified
properties, leveraging SAT solvers to find solutions or identify
inconsistencies within a bounded scope.

Alloy has been used in various research projects to model and
verify the properties of software architectures and protocols. For
instance, Akhawe et al. [1] utilized Alloy to model web security
mechanisms, demonstrating the language’s utility in capturing com-
plex interactions and verifying security properties while revealing
three previously unknown vulnerabilities. This exemplifies how
Alloy facilitates a deep understanding and validation of complex
systems in practical applications.

In this paper, we use Alloy 6 [4] to specify and examine the
security attributes of ZK-Rollups. We create formal models of the
contract interactions within ZK-Rollups, outlining key properties
for mechanisms such as forced transactions and upgradeability.
Using the Alloy Analyzer, we not only validate the accuracy of
certain designs, but also uncover weaknesses in simplistic designs,
highlighting their security issues. To quote the Alloy book [17], “In

this respect, the Alloy language and its analysis are a Trojan horse:
an attempt to capture the attention of software developers, who are
mired in the tar pit of implementation technologies, and to bring them
back to thinking deeply about underlying concepts”.

3 Threat Model and Goals
3.1 Threat Model
We construct a robust adversary model to rigorously assess the
security of the mechanisms presented in this paper. This model
assumes that the L2 network is malicious, with no trust assumptions
regarding its correct operation. We consider an adversary capable
of gaining complete control over the L2 network, emphasizing the
importance of properly designing ZK-Rollups’ mechanisms.
Principals. The main principals in ZK-Rollups are users, rollup
operators, and rollup administrators.
Users. Users interact with the L2 either by submitting their trans-
actions directly to the L2 network, or by submitting them through
the rollup’s contract on the L1 via the forced queue.
Rollup operators. Rollup operators handle the components that
sequence user transactions in the L2 into batches, commit them in
the L1, and request validity proofs (c.f. Figure 2). They may also
receive the proofs and submit them to the L1. Currently, in most
L2s, there is a single centralized entity operating the L2, but in our
model, the operator could be controlled by one or many entities
that do not need to be trustworthy.
Rollup administrators. In addition to rollup operators, some enti-
ties have administrator capabilities for the L1 smart contracts of the
L2. Administrators can be white-listed or elected via governance
mechanisms. These administrators have the ability to request sys-
tem upgrades or update blacklists. In practice, the administrator
capabilities are assigned to a multisig that could be controlled by
some distinct entities. The mechanisms we describe in this paper
should maintain security even if administrators are malicious.
Security assumptions.

• The underlying L1 remains secure and maintains liveness to
enable progress of L2 operations. Should L1 face downtime,
L2 operations might be delayed as well, but the security of
the L2 would remain intact, thus preserving system safety.

• The cryptographic primitives (ZKPs) and their implementation
are assumed to be secure [6], ensuring that no verifier accepts
an invalid proof of execution. This assumption also extends
to the correctness of any trusted setup procedures, the de-
ployed verification keys on the L1 verifier contract, and the
smart contract code responsible for proof verification.

• Smart contracts operating L2 functionalities on the L1 are
considered secure against conventional vulnerabilities, such
as re-entrancy attacks [5], and are modifiable only through a
well-defined upgrade process. In other words, in this paper,
we focus on what may be called logical vulnerabilities.

• The initial state of the system is empty, i.e., the system has
not processed or finalized any transactions and computed
any proofs. Furthermore, the system’s initial policies and
contracts are non-malicious and secure for users, meaning
that if a user can interact with the L2, the user’s funds cannot
be locked or lost before an adversarial upgrade is enforced.

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

Strong Adversary Model. Any of the parties mentioned above —
users, operators, and administrators — can become malicious. Users
can perform DoS attacks, operators can engage in transaction cen-
sorship, and rollup administrators can execute malicious upgrades
that could lead to the theft of all user assets. Despite these possi-
bilities, the saving grace is that rollup contracts deployed on the
underlying L1, together with the economic security that the L1
provides, allow us to use decentralized trust to address these issues.
This comes down to the ability to analyze [8] these rollup contracts.

For example, zkSync Era has contracts such as Verifier.sol,
which process validity proofs and can be upgraded by a multi-
sig12. It is critical that this verifier can only be updated through a
safe process because if it becomes malicious, users can lose their
money. Hence, users should have a sufficient mechanism to exit
the rollup in case of adversarial or questionable upgrades. While
our model is extensible, this paper largely focuses on functional
security, sidestepping DoS concerns.

3.2 User-centric Security Goals
In this work, our objective is to provide robust safety guarantees
to L2 users, even under a strong adversarial model where the L2
network and L2 administrator can be fully compromised.
Weak liveness. A key goal is to ensure that any user transaction
submitted to the forced queue is processed as long as the L2 con-
tinues to make progress. This guarantee is crucial to protecting
users against potentially compromised or malicious L2s or even
adding L1-like censorship resistance for L2s. Moreover, our pro-
posed design ensures that even when L2 contracts enforce transac-
tion blacklisting, transactions cannot be halted if they have already
been submitted to the forced queue. This mechanism is vital to
maintaining the integrity and safety of ZK-Rollups. In summary,
weak liveness means that the L2 will eventually process user trans-
actions submitted through L1 (i.e., inheriting the liveness of the
L1), or the rollup will be frozen. In Section 4.3, we design a forced
queue mechanism that enforces weak liveness.
Secure upgrades and user assets protection. In addition, we
provide and analyze designs for securely upgrading L2’s contracts.
In practical terms, this means that if there’s an undesirable upgrade,
users have time to exit the rollup. This includes mechanisms to
prevent “rug pulls” (see Section 1.1 for some examples of this) or
sudden, unanticipated changes that may compromise user assets.
Ensuring that users receive sufficient notice and have effective
mechanisms to respond to changes is essential for maintaining
trust and stability within L2 environments.

4 Implementation in Alloy
In this section, we present the implementation details of our ZK
Rollup model using the Alloy specification language. We first give
a brief technical introduction to Alloy, followed by the Alloy model
for a strawman ZK Rollup and three critical mechanisms, highlight-
ing our reasoning and essential security properties. In Section 5.1,
we demonstrate how to use our model to detect issues in flawed
designs. Our approach directly encourages finding problems early,
at the design stage, as opposed to later.

12https://github.com/matter-labs/era-contracts

Why Alloy. We selected Alloy 6 [4] over other formal methods
tools, such as TLA+ andNuSMV, due to its balance of expressiveness,
ease of specification, and automation for finding counterexamples.
Alloy’s declarative syntax based on first-order relational logic is
particularly well-suited for modeling relational systems, such as
rollup states and transitions [16]. Prior work in web security [1] and
smart contract validation [11] shows that Alloy enables uncovering
subtle vulnerabilities effectively, making it a practical and proven
choice for the security analysis of systems where quick design
iteration and counterexample-driven debugging are critical.

4.1 A Brief Introduction to Alloy
Alloy 6 [4, 16] is a declarative modeling language that uses first-
order relational logic to specify and check the properties of software
systems. Data types in Alloy are represented as relations defined by
signatures, which can be abstract or concrete. Abstract signatures
categorize general types that are refined by more specific concrete
signatures, creating a flexible and powerful type system. The lan-
guage enforces the integrity of the model through facts, which are
constraints that must always hold within the model. Functions and
predicates in Alloy are named expressions and logical formulas,
respectively; these allow the parametrization and reuse of complex
logical constructs throughout the model.

Reasoning about models in Alloy is facilitated by the Alloy Ana-
lyzer, which translates the code into a satisfiability problem. The
resulting SAT instance is then tackled using SAT solvers, which
amounts to bounded model checking within a specified model scope.
Commands check and run are instrumental in this process: check
is used to verify whether a given predicate can be invalidated, thus
checking for counterexamples within the constraints of the model,
while run finds instances that satisfy all conditions of the model up
to a certain scope, allowing effective testing of various scenarios.

The Alloy analysis is always limited to a specified scope. The
small-scope hypothesis states that a high proportion of errors can be
found by analyzing a system for all test inputs within some small
scope [18, 19]. However, Alloy’s guarantees are strictly bounded:
if no counter-example appears within the specified scope, nothing
can be inferred beyond it. To offset this incompleteness, we rely on
the small-scope hypothesis. Still, bounded success is not a universal
proof. Alloy is a performant bug-finder, not a full verifier.We discuss
this trade-off further in Section 6.

This structured approach to modeling with Alloy ensures model
checking of properties and behaviors in software systems, making
it an invaluable tool in the development and analysis of reliable soft-
ware architectures. In the upcoming sections, we present how we
used Alloy to design and verify the correctness of critical elements
of ZK-Rollup logic.

4.2 Strawman ZK Rollup Model
In this section, we formalize a simple ZK rollup model that notably
lacks mechanisms to process forced transactions through its L1
contract and similarly lacks any mechanism for safely upgrading
its contracts. In this model, rollup operators and administrators
may arbitrarily censor user transactions. Furthermore, in scenarios
where the L2 becomes malicious or experiences downtime, user
funds can be frozen. In subsequent sections, we will enhance this

https://github.com/matter-labs/era-contracts
https://alloy.readthedocs.io/en/latest/language/commands.html#scopes

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

model to include support for forced transactions and enable safe
upgrade protocols.
Datamodel specification. The data model of our simple ZK rollup
is structured around the following key elements:
• Inputs: Represented by abstract datatypes, inputs represent
transactions submitted by end-users. This model deliberately
omits additional attributes such as sender, receiver, or transaction
amounts, as these details are not particularly relevant to our
analysis.

• Block: Blocks hold an ordered sequence of inputs, forming the
basic building block of our model. Although our model could be
extended to include batches of blocks, we currently limit it to
blocks for simplicity.

• Commitment and proof: We track two fields for both com-
mitments and proofs: state and diff. The state is represented as
an ordered sequence of blocks, and the diff refers to the cur-
rent block for which we commit to the L1 contract and produce
a proof. It is important to note that in practice, the diff could
encompass all transaction data for the block or even a state diff.

• L1: This component models the L2 rollup’s representation on the
underlying L1 chain, incorporating the finalized state of blocks
along using sets of submitted commitments and proofs.

In typical rollup systems, the state could be represented by a short
digest (for example, the root of the Merkle tree), but in our model,
we represent a state by the sequence of all finalized blocks from
the genesis block. The Alloy code describes the data model as fol-
lows. Note that seq indicates an ordered list in Alloy and one is a
multiplicity which forces variable to always be a singleton set.
1 var sig Input{}
2 var sig Block { var block_inputs : seq Input }
3
4 var abstract sig ZKObject {
5 var state : seq Block ,
6 var diff : one Block
7 }
8 var sig Proof extends ZKObject {}{
9 not state.hasDups
10 diff not in state.elems
11 }
12 var sig Commitment extends ZKObject {}{
13 not state.hasDups
14 diff not in state.elems
15 }
16 one sig L1 {
17 var finalized_state : seq Block ,
18 var commitments : set Commitment ,
19 var proofs : set Proof ,
20 }{ not finalized_state.hasDups }

Processing logic and events. The core functionalities of the L1
contract(s) are represented by a series of actions that are essential
to the operation of the system; these actions are:
• Receiving commitments: The L1 contract is responsible for
receiving and storing commitments. It ensures there is no du-
plication (line 2) by checking that the commitment does not
already exist within the current set of commitments. Addition-
ally, it maintains a sequence that extends the existing state of
the L2 (lines 3 and 4). This is achieved by verifying that the
state sequence within the commitment aligns precisely with the
current finalized state up to the last element. This check ensures
that each new commitment builds directly upon the most recent
confirmed state, thereby preserving the integrity and continuity
of the blockchain’s transaction history.

1 pred receive_commitment[c : Commitment] {
2 no c & L1.commitments
3 c.state.subseq[0,sub[#L1.finalized_state ,1]] = L1.

↩→ finalized_state
4 L1.commitments ' = L1.commitments + c
5 }

Alloy supports common set operators like membership (in), in-
tersection (&), union (+), etc. To refer to an expression in the next
state we use the apostrophe operator '. For example, x' = x + c
means that the value of x in the next state is the union of c and
the value of x in the current state.

• Receiving proofs: Similar to commitments, proofs are also
received and stored by the L1 contract. These proofs are aligned
with the current state to maintain consistency and ensure the
validity of the L2 as in the case above.

• Single-step rollup update: This critical functionality of the
L1 contract involves processing both commitments and proofs
to securely advance the state of L2, as outlined in the Alloy
predicate rollup_process. The process begins by confirming
that both the commitment 𝑐 and the proof 𝑝 are present within
the respective sets managed by the L1 contract (lines 2–3). It
then verifies that both the commitment and the proof agree on
the current state and the proposed state transition (lines 4–6),
affirming that they are intended to advance the L2 from the
same state. The predicate also ensures that the proposed state
transition, or diff, has not been previously processed (line 7,
s.idxOf[x] returns the first index where x appears in s). After
this check, the finalized state of the L2 is advanced to include
this diff (line 8); commitment and proof sets are updated to
remove processed or outdated entries (lines 9–10), maintaining
the rollup’s integrity.

1 pred rollup_process[c : Commitment , p : Proof] {
2 c in L1.commitments
3 p in L1.proofs
4 c.state = p.state
5 c.diff = p.diff
6 c.state = L1.finalized_state
7 (no L1.finalized_state.idxOf[c.diff])
8 L1.finalized_state ' = L1.finalized_state.add[p.diff]
9 L1.proofs ' = L1.proofs - (p + { q : Proof | #q.state < #L1

↩→ .finalized_state })
10 L1.commitments ' = L1.commitments - (c + { q : Commitment |

↩→ #q.state < #L1.finalized_state })
11 }

While these are omitted for brevity, our Alloy implementation
includes frame conditions to ensure that parts of the system that
are not affected by a particular operation remain unchanged.
Strawman rollup properties (SRPs). Transaction processing
within the rollup is implemented as a series of events, obeying
the following rules.
⊲ SRP 1. Event Granularity: At any given time, only one event occurs.
This property ensures that the granularity of events is correct and
that we do not have overlapping events in the model of the system.
⊲ SRP 2. Monotonic State: The finalized state is guaranteed to grow
monotonically. In other words, at any given moment, the system
can only append new blocks to the finalized state, but previously
finalized blocks never change.

always (finalized_state in finalized_state ')

https://alloy.readthedocs.io/en/latest/language/signatures.html#seq
https://alloy.readthedocs.io/en/latest/language/signatures.html#one

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

⊲ SRP 3. Justified State: If a block reaches the finalized state, then
once (i.e., at least at one point in the history) there was a proof and
a commitment for it that corresponded to the then-current state,
ensuring all finalized transactions are valid and verified.
1 always(
2 all b : Block | some L1.finalized_state.idxOf[b]
3 implies
4 (once some c : Commitment , p : Proof |
5 c in L1.commitments
6 and p in L1.proofs and
7 c.diff = p.diff and b = c.diff
8 and c.state = L1.finalized_state)
9)

⊲ SRP 4. State Progression Validity: A commitment or proof that is
smaller than the current state is never successfully processed.
Checking.Aswementioned above, theAlloyAnalyzer does bounded
model checking; the scope of checking is provided. For example,
the following command checks whether property SRP2 holds in the
scope, which contains 10 objects of every signature and in traces
up to 20 steps.

check monotonic_state for 10 but 1..20 steps

The check command tells the Alloy Analyzer to find a counterexam-
ple within the specified scope. If the counterexample is not found,
we know that the property holds within the specified scope.

Strictly speaking when we checked the property for 20 steps it
still can fail for 21 steps. However, small-scope hypothesis states that
a high proportion of errors can be found by checking a program
for all test inputs within some small scope [19].

4.3 Forced Queue
In the previous section, we described a strawman ZK Rollup that
does not support user transactions submitted through the L1 to
force their inclusion by the L2. This section extends the strawman
model to enable that functionality, providing users with stronger
guarantees. Our goal is to ensure that forced transactions are pro-
cessed by the L2; otherwise, the L2 cannot progress (i.e., extend the
finalized state).
Data model extensions.We introduce a new abstract signature
called ForcedEvent, and another signature called ForcedInput
that extends it. ForcedInput contains a field tx that represents a
transaction submitted to the contracts of the L2 in the L1. Addi-
tionally, in the L1 type, we add a field called forced_queue that is
an ordered sequence of ForcedEvents. The relevant Alloy code is
provided below.
1 var abstract sig ForcedEvent {}
2
3 var sig ForcedInput extends ForcedEvent {
4 var tx : one Input
5 }
6
7 one sig L1 {
8 var forced_queue : seq ForcedEvent
9 // + previously introduced fields
10 }

Processing logic. Initially, we define the logic to add forced inputs
to the forced queue. This process simply checks that the forced
input does not already exist in the forced queue and adds the new
input to the end of the queue. The respective Alloy predicate is as
follows:

1 pred receive_forced[f : ForcedEvent] {
2 no L1.forced_queue.idxOf[f]
3 L1.forced_queue ' = L1.forced_queue.add[f]
4 }

Next, we update the rollup_process predicate to take into account
the forced queue. If the forced queue is empty, then the rollup should
process transactions as before. If it is not empty, then every new
finalized block needs to include the head of the forced queue and
can also include other transactions from the forced queue.
1 some L1.forced_queue
2 implies
3 (L1.forced_queue.first in ForcedInput
4 and some c.diff.block_inputs.idxOf[L1.forced_queue.first.tx

↩→])

Upon being finalized, elements need to be removed from the forced
queue. In Alloy, we ensure that no transactions in the current pro-
cessing batch remain in the updated forced queue (line 1). The
FIFO transaction order is maintained; transactions are moved closer
to the queue’s head to expedite processing while preserving their
relative positions (line 3). This preservation of order is crucial for
fairness and for ensuring that, eventually, all transactions are pro-
cessed. We also check that the relative positions of the elements do
not change (line 8). Finally, to maintain the integrity of the forced
queue, the model prohibits adding new elements during processing
(line 12).
1 no (L1.forced_queue '.elems.tx & p.diff.block_inputs.elems)
2
3 all x : ForcedInput | (x.tx not in p.diff.block_inputs.elems
4 and (some L1.forced_queue.idxOf[x]))
5 implies L1.forced_queue '.idxOf[x] < L1.forced_queue.idxOf[x]
6 and (some L1.forced_queue '.idxOf[x])
7
8 all x, y : ForcedEvent | some L1.forced_queue '.idxOf[x] and some

↩→ L1.forced_queue '.idxOf[y]
9 and L1.forced_queue.idxOf[x] < L1.forced_queue.idxOf[y]

↩→ implies
10 L1.forced_queue '.idxOf[x] < L1.forced_queue '.idxOf[y]
11
12 all x : ForcedEvent | x not in L1.forced_queue.elems
13 implies x not in L1.forced_queue '.elems

Forced queue properties (FQPs).We summarize the desired prop-
erties of the forced queue below.
⊲ FQP 1. Guaranteed Processing: If the forced queue is non-empty
and a new state is finalized, then the head of the forced queue must
be processed and removed.
1 always (
2 (some L1.forced_queue and some (L1.finalized_state ' - L1.

↩→ finalized_state))
3 implies
4 L1.forced_queue.first.tx in new_finalized_inputs
5 and not L1.forced_queue.first.tx = L1.forced_queue '.first.tx
6)

⊲ FQP 2. Forced Queue Stable: If the finalized state did not change,
then the forced queue did not decrease.
⊲ FQP 3. State Invariant: If the forced queue is non-empty and did
not change, then the finalized state remains unchanged.
⊲ FQP 4. Forced Inputs Progress: Forced inputs that were not pro-
cessed move closer to the head of the forced queue.
1 always (
2 (some L1.forced_queue
3 and #L1.finalized_state < #L1.finalized_state ') implies
4 (all x : ForcedEvent |
5 (some L1.forced_queue.idxOf[x]
6 and some L1.forced_queue '.idxOf[x])

https://alloy.readthedocs.io/en/latest/language/time.html
https://alloy.readthedocs.io/en/latest/language/commands.html#run

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

7 implies
8 L1.forced_queue '.idxOf[x] < L1.forced_queue.idxOf[x])
9)

⊲ FQP 5. Order Preservation: Forced inputs retain their relative order
within the queue.
⊲ FQP 6. Finalization Confirmation: If an input was in the forced
queue and then disappeared from it, it was finalized.
1 always (
2 all fi : ForcedInput | fi in L1.forced_queue.elems
3 implies always(fi not in L1.forced_queue.elems implies fi.tx in

↩→ all_finalized_inputs)
4)

These properties combined result in the following guarantee that
ensures that a user’s transactions can be processed, even if the L2
operators arbitrarily and immediately decide to censor that user.

Guaranteed Transaction Processing in the Forced Queue

For any transaction 𝑡 in the forced queue of an L2, if the L2 pro-
gresses, then 𝑡 will eventually be processed.

4.4 Forced Queue with Blacklisting
Recently, transaction and address censorship have become promi-
nent issues in the Ethereum ecosystem. For example, 6% of Ethereum
blocks are constructed to beOFAC-compliant [33], and Circle (USDC)
maintains a list with blacklisted addresses [35]. Some L2 networks
may choose to censor transactions to be OFAC compliant, poten-
tially to be determined through their governance protocol. Next, we
describe an “enshrined” blacklisting mechanism; this mechanism
was meticulously designed, formalized, and checked with Alloy
Analyzer to ensure it does not violate forced queue properties.

A naive blacklisting mechanism could violate the main property
of the forced queue that a transaction in the forced queue must be
processed, or it could be abused to prevent users from exiting the L2.
Our mechanism receives blacklisting policies through the forced
queue as special inputs that can be processed only when they are
at the head of the queue. Importantly, once a blacklisting policy is
processed, new transactions that do not comply with this policy
cannot be added to the forced queue. Note that if a transaction
that would otherwise be blacklisted by the policy is already in the
queue before the policy is processed, then the L2 must process it;
otherwise, the system will freeze.
Data Model Extensions. Two changes are required to support
blacklisting. First, we introduce a new signature that extends ForcedEvent
called ForcedBlacklistPolicy, which describes a set of inputs
that should be rejected. In practice, this could target anything from
specific addresses to specific transactions. Here, for simplicity, we
narrow it down to a set of Inputs. Furthermore, we include a
new field blacklist in L1, which is a set of Inputs that holds the
currently active blacklisting policy.
1 var sig ForcedBlacklistPolicy extends ForcedEvent {
2 var predicate : set Input
3 }
4
5 one sig L1 { var blacklist : set Input }

Processing Logic. To integrate blacklisting policies into our forced
queue mechanism, we need to make some changes to our model.

Firstly, we update receive_forced to append blacklist updates
and only accept forced inputs that are not currently blacklisted by
the active or pending forced blacklist policy.
1 no L1.forced_queue.idxOf[f]

Next, we need to add a predicate to update the blacklist in the
contract when it reaches the head of the forced queue. This predicate
enforces that the blacklist is updated and the blacklist policy is
removed from the queue.
1 pred update_blacklist[f : ForcedBlacklistPolicy] {
2 L1.forced_queue.first = f
3 L1.blacklist ' = L1.forced_queue.first.predicate
4 L1.forced_queue ' = L1.forced_queue.delete [0]
5 }

Finally, we update the predicate rollup_process to prevent pro-
cessing blacklisted blocks (line 1) and only allow processing inputs
that are ahead of the next blacklist policy in the forced queue (line 3).
It is important to understand that blacklisting changes the oper-
ation of the forced queue. Now, if a new blacklisting policy was
added to the forced queue, then after that, the forced queue can-
not accept inputs that are blacklisted by the queued but not yet
enforced policy. Without this extra check, Alloy tells us that we
can reach a state when the head of the forced queue is blacklisted,
which effectively means that finalized state becomes immutable.
1 no (L1.blacklist & c.diff.block_inputs.elems)
2
3 all x : ForcedBlacklistPolicy , y : ForcedInput |
4 some L1.forced_queue
5 and x in L1.forced_queue.elems
6 and y.tx in L1.forced_queue.elems.tx
7 and y.tx in c.diff.block_inputs.elems
8 implies L1.forced_queue.idxOf[y] < L1.forced_queue.idxOf[x]

Blacklisting properties.
⊲ BP 1. Non-blacklisted Finalization: If an input is finalized, then it
is not in the blacklist.
1 always(
2 all x : Input |
3 x in L1.finalized_state '.elems.block_inputs.elems
4 and x not in
5 L1.finalized_state.elems.block_inputs.elems
6 implies x not in L1.blacklist
7)

⊲ BP 2. Forced Queue Integrity under Censorship: If a censored input
is at the head of the forced queue, then the finalized state will never
change.
⊲ BP 3. Head Position Security: It never happens that head position
of the queue is blacklisted.
⊲ BP 4. Future Policy Compliance: All inputs that follow a new
blacklist policy in the forced queue are not blacklisted by it.
1 always (
2 all x : ForcedBlacklistPolicy , y : ForcedInput |
3 x in L1.forced_queue.elems
4 and y in L1.forced_queue.elems
5 and L1.forced_queue.idxOf[x] < L1.forced_queue.idxOf[y]
6 implies y.tx not in x.predicate
7)

⊲ BP 5. Following Active Policy: If an input got forced and there is no
queued blacklisting policy, then the input is not in the L1.blacklist.
1 always (
2 all y : ForcedInput |
3 no L1.forced_queue.elems & ForcedBlacklistPolicy
4 and y in L1.forced_queue.elems

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

5 implies y.tx not in L1.blacklist
6)

Given the properties outlined above, our model provides the fol-
lowing guarantee for users.

Integrity of Processed Inputs under BlacklistingMechanism

For any input processed in the L2 using a forced queue with
blacklisting, the following conditions hold: 1) Any input that is
processed is not blacklisted at the time of its processing. 2) When
the input from the forced queue reaches the head of the queue, it
is not blacklisted by the active policy.

4.5 Forced Queue and Upgradeability
So far, we have discussed a basic model and presented mechanisms
for forced queues and safely implementing a blacklist. In this section,
we formalize a mechanism for applying upgrades to L2 contracts,
noting that these upgrades could update the verifier key, indicate
changes to the ZKP circuits, and even implement critical EIPs 13

or other upgrades. Furthermore, these upgrades could alter the
mechanisms previously presented. Hence, it is crucial that users
have the opportunity to exit before an upgrade is enforced. To
the best of our knowledge, we are the first to present a complete
formalization and analysis of such a mechanism for rollups.

The upgrade mechanism operates in the following manner:
(1) First, the upgrade is announced, including all relevant details,

and this announcement is posted on L1.
(2) Following the announcement, the system collects forced

inputs for a specified duration.
(3) Once this duration elapses, meaning the timeout is reached,

the rollup ceases to accept forced events and begins process-
ing the forced queue until it is cleared.

(4) Once the forced queue is cleared, the upgrade is deployed,
and the rollup shifts to a new operational mode. During
this timeout period, only forced queue events are processed,
which pressures the L2 operator to handle the forced queue
swiftly. Halting the acceptance of forced transactions risks
the assurance of a permissionless exit via the forced queue
mechanism. Note that L2 users can still submit transactions
through the L2 and receive pre-confirmations, but these
cannot be finalized on the L1 until the forced queue is cleared.

In Alloy, we cannot reason about arbitrary system upgrades, so we
instantiate the described upgradeability mechanism to update the
blacklisting policy. The resulting mechanism is not equivalent to
the mechanism described in Section 4.4.
Comparison to blacklisting directly through the forced queue.
In Section 4.4, we implemented a model which guarantees that in-
puts that were forced prior to the update of the blacklist policy will
be finalized before the new blacklisting policy is deployed. How-
ever, every forced input which appears in the queue after the new
blacklist policy must respect it.

In this section, we describe a mechanism that updates the black-
listing policy through the generic upgradeability mechanism. In
this case, users who observed the upgrade announcement can force

13Ethereum Protocol Improvements (https://github.com/ethereum/EIPs)

their inputs (even if blacklisted by the pending upgrade) before the
timeout. The time window between the upgrade announcement and
the timeout could be especially useful when users disagree with the
upgrade and would like to take action (e.g., quit the system) before
the upgrade is deployed. At the same time, such a mechanism gives
an opportunity to adjust to the bad actors.

In summary, both blacklisting strategies have their trade-offs.
More specifically, the blacklisting strategy through the forced queue
(see Section 4.4) allows the ZK-Rollup to immediately prevent cen-
sored transactions from being added into the forced queue (how-
ever, it cannot forbid execution of the transactions that are al-
ready present in the queue). On the other hand blacklisting strategy
through the upgradeability mechanism allows users to notice the
upgrade and quit the ZK-Rollup within the predefined window of
time without receiving a damage.
Data model extensions. To support upgrades, we introduce some
new types. The first is the new abstract type UpgradeAnnouncement,
and its concrete subtype BlacklistUpdateAnnouncement, which
includes a blacklist_policy. This type represents an announce-
ment of an upgrade, detailing the changes that will be applied, and
users can inspect it as it will be submitted to L1. We also introduce
another type, Timeout, associated with an UpgradeAnnouncement,
indicating when the upgrade waiting period expires and it is time
to enforce the upgrade.

1 var abstract sig UpgradeAnnouncement {}
2
3 var sig BlacklistUpdateAnnouncement extends UpgradeAnnouncement {
4 var blacklist_policy : one ForcedBlacklistPolicy
5 }
6
7 var sig Timeout {
8 var upgrade : one UpgradeAnnouncement
9 }
10
11 one sig L1 {
12 var ongoing_upgrade : lone UpgradeAnnouncement
13 // + previously introduced fields
14 }

Processing logic.Handling upgrades requires three new predicates
and amendments to rollup_process and receive_forced. First,
upgrade_init ensures there is no ongoing upgrade (line 2), sets
the ongoing upgrade in the L1 contract (line 3), and verifies that
this upgrade is not from the past (line 4).

1 pred upgrade_init[f : UpgradeAnnouncement] {
2 L1.ongoing_upgrade = none
3 L1.ongoing_upgrade ' = f
4 (f not in Timeout.upgrade)
5 }

Next, the upgrade_timeout predicate ensures that the current
timeout corresponds to the ongoing upgrade. The upgrade_deploy
predicate then enforces the ongoing upgrade changes by applying
the associated blacklist (if any) and setting the ongoing upgrade to
None, which effectively updates the contracts and performs any
modifications to the L2’s logic.

Furthermore, we update two existing predicates. Specifically, for
rollup_process, we change the logic so if an upgrade is in process,
there must be something in the forced queue to process (otherwise,
L2 might delay the finalization of the upgrade indefinitely and keep
operating with a stopped forced queue). This is enforced with the
following line:

https://github.com/ethereum/EIPs

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

1 upgrade_in_progress implies upgrade_forced_queue_processing

Similarly, in receive_forced, we enforce that if an upgrade is in
progress, new forced inputs are accepted only if the timeout for
queuing has not yet occurred.

Upgradeability Properties (UP).

⊲ UP 1. Consistency of Upgrade Announcement, Timeout, and En-
forcement: If an upgrade is deployed (policy changed), it must be
preceded by a properly announced upgrade and a timeout period.
The following Alloy code validates this sequence, confirming that
any changes to the blacklist result exclusively from an upgrade
process that has been announced and timed correctly. Specifically,
the code stipulates that a change in the blacklist (line 2) must trace
back to an Upgrade Announcement (line 4-8) that specifies the new
blacklist settings. It also ensures that this change only takes effect
following a Timeout associated with the announcement (lines 9–
10), which verifies the waiting period was respected before the
upgrade was enforced.

1 always (
2 all is : set Input | L1.blacklist = is and
3 not L1.blacklist = L1.blacklist ' implies
4 some x : UpgradeAnnouncement | L1.ongoing_upgrade = x and
5 once (L1.ongoing_upgrade = none and
6 L1.ongoing_upgrade ' = x and
7 L1.blacklist = is and
8 (no { t : Timeout | t.upgrade = x })
9 and ((some t : Timeout | t.upgrade = x)
10 releases L1.blacklist = is))
11)

⊲ UP 2. Finalization of Forced Inputs before the Upgrade: After an
upgrade, it is essential that all forced inputs are finalized to ensure
that no transactions are left pending. The Alloy code below enforces
this requirement by checking that if there is a change in the blacklist
(indicative of an upgrade), then in the past, every forced input that
was in the queue must eventually be finalized. This is achieved by
ensuring that each transaction in the forced queue, at any point
before the blacklist change, eventually becomes part of the finalized
state. The code ensures that all pending transactions are processed
before any announced upgrade takes effect.

1 always (
2 (not L1.blacklist = L1.blacklist ') implies
3 historically (
4 all f : ForcedInput |
5 f in L1.forced_queue.elems implies
6 eventually (f.tx in
7 L1.finalized_state.elems.block_inputs.elems
8)
9)
10)

⊲ UP 3. Post-Upgrade System Integrity: If the policy changes, then
no ongoing upgrade is happening (the forced queue is unlocked,
and the rollup process is unlocked).

⊲ UP 4. Consistency of Blacklisting During Upgrades: As long as the
upgrade is ongoing, the L1.blacklist does not change.

Given all of the above properties, we arrive at the following:

Upgrade Transparency and Guaranteed Action Before Up-
grade Enforcement

An upgrade must begin with an announcement being published
on L1 and users have a time window to submit their inputs before
the upgrade is deployed; the mechanism also ensures that all
inputs submitted to the forced queue during the time window are
finalized before the upgrade is deployed.

This mechanism ensures that users are not caught off-guard by
upgrades and are guaranteed to be able to act upon upgrade (e.g.,
exit from L2 rollup) before the upgrade is enforced.

5 Leveraging Alloy Models for Testing Rollups
This section presents a complete methodology for testing and veri-
fying the correctness of ZK-Rollup designs and implementations.
First, in Section 5.1, we describe how our Alloy models can be
used for design-time testing, enabling early detection of security
and censorship resistance issues in the system design. Then, in
Section 5.2, we explain how the formal properties we specify in
Section 4 (i.e., FQPs, BPs, and UPs) can be adapted for code-level
verification and testing of smart contracts, using industry-standard
formal verification and property-based testing frameworks. Further,
we demonstrate this methodology for Scroll’s forced queue, where
we adapt our Alloy model to reflect Scroll’s architecture and trans-
late the formal properties into Foundry invariants. This allows us
to apply property-based testing directly on Scroll’s smart contracts,
bridging design-time specifications with implementation-level test-
ing. Together, these two layers of testing and verification form a
practical end-to-end methodology for testing the correctness of ZK-
Rollup security mechanisms from the initial design to the deployed
code.
Note on state-of-the-art rollups.Currently, most general-purpose
ZK-Rollups lack implementations of essential mechanisms like
forced queues and delayed upgrades, which are crucial for inher-
iting L1’s censorship resistance and security. The only exception
is Scroll that implements a timeout-based forced queue that we
thoroughly analyze in this section. Yet, our approach can guide
practitioners in testing their implementations as these mechanisms
are developed.

5.1 Design-time Testing
Building on the implementation details and security properties
described in Section 4, we explore how our Alloymodels can be used
for design-time testing of ZK-Rollups. We provide an infeasibility
result and highlight a vulnerability in the design of upgradeability
mechanisms for ZK-Rollups. Note that this is not affecting any live
systems as the safe upgraedability functionality has not be deployed
by any ZK-Rollups.
Scenario testing. To validate our models, we implement several
scenarios that test their functionality under various conditions,
such as handling simultaneous commitments and proofs, process-
ing in different sequences, and ensuring that commitments for an
outdated state are not processed. These scenarios help demonstrate
the model’s capabilities and expose potential vulnerabilities. Also,
it helps to detect incorrect specifications, e.g.:

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

L1

forced_queue = []

blacklist = []

ongoing_upgrade = None

Initial State

L1

forced_queue = [Input_1]

blacklist = []

ongoing_upgrade = None

Timeout

upgrade = policy

status = False

Empty state

Step 1

Force Input Transaction
(Input_1)

Step 2

Announce upgrade policy
(blacklist [Input_1])

L1

forced_queue = [Input_1]

blacklist = []

ongoing_upgrade = policy

Step 3

Timeout for policy occured
(blacklist [Input_1])

L1

forced_queue = [Input_1]

blacklist = []

ongoing_upgrade = policy

Timeout

upgrade = policy

status = True

Step 4

Enforce Upgrade
Counterexample

L1

forced_queue = [Input_1]

blacklist = [Input_1]

ongoing_upgrade = None

Figure 3: Counter-example generated by Alloy, illustrating potential issues with the naive upgradeability mechanism. In
this scenario, the blacklisting policy targets Input_1, leading to an L2 freeze because an input in the forced_queue cannot be
processed. This occurs because the mechanism does not require processing all transactions from the forced queue prior to
executing an upgrade.

1 run {
2 eventually(
3 some x : Input |
4 x in L1.blacklist
5 and (x not in all_finalized_inputs)
6 and eventually (x in all_finalized_inputs))
7 } for 7

In this scenario for the rollup with upgradeability and blacklisting
(Section 4.5), we start with an empty blacklist state and no queued
commitments or proofs. We assert that, eventually, we would like
to reach a state where there is an input x which is blacklisted
but not finalized. After that we would like to eventually reach a
state when the input x is finalized. This scenario is only possible if
the rollup updates its blacklists two times where the first update
blacklists x and the second update removes x from the blacklist and
at the end x gets finalized. When we execute the run command,
the Alloy Analyzer looks for models with up to seven instances of
each signature that would satisfy the predicate. The Alloy Analyzer
finds a satisfying instance that consists of a trace of length eight.

Infeasibility of on-the-spot blacklisting. When processing a
blacklisting policy update transaction (Section 4.4), transactions
that precede it in the queue must be processed. This means that
otherwise censored transactions would have to be processed. If
blacklisting is applied immediately, it can generate a trace that
gets the system stuck, breaking the guarantees of our system. To
maintain the integrity of the forced queue, blacklisting should be
enforced either through the forced queue (Section 4.4) or upgrade-
ability mechanism (Section 4.5), ensuring correct operation of the
forced queue. Moreover, the described upgradeability mechanism
also ensures that all users have a fair chance to process their transac-
tions before new policies take effect. Notably, if we allow the query
that updates the blacklisting policy “on-the-spot”, then Alloy imme-
diately generates simple counterexamples to most of the properties
mentioned above. Most importantly, due to the non-deterministic
order of the actions in the system, “on-the-spot” updates can always
lead to a situation where forced queue inputs get blacklisted, which
makes the system stuck (i.e., no more blocks could be finalized).

Potential vulnerability in upgradeability policy. The current
state-of-the-art upgradeability design, often described as the safest

approach, typically includes one week before enforcing an up-
grade.14 Upgrades based solely on time can lead to situations where
users who wish to exit the L2 before the upgrade are locked in
because their transactions cannot be processed promptly. However,
our solution (Section 4.5) mitigates this issue by ensuring that all
transactions in the forced queue are processed before the upgrade
takes effect, thus maintaining users’ safety in case of malicious
upgrades. Here, we discuss the potential pitfalls of relying solely on
a timeout period for upgrades and then provide a counterexample
demonstrating the issues with that mechanism, as produced by the
Alloy Analyzer.

Two issues could arise from merely enforcing the upgrade after
a set period. For the first example, consider the case where we use a
forced queue and upgradeability described in Section 4.5. However,
we deploy the upgrade based solely on the timeout (i.e., not taking
care of locking and emptying the forced queue before deploying
the upgrade). Figure 3 demonstrates the issue that might arise in
that case produced by Alloy. Specifically, what happens is that first,
we start with an empty forced queue, and then a user adds an input
to the queue (Input_1). Next, an announcement occurs, and then
the timeout of that announcement is reached. This enforces the
upgrade, updating the blacklist to include Input_1. The result is
that L2 becomes frozen because the head (Input_1) of the queue is
blacklisted. Another problem could occur if the upgrade involves
changing the functionality of the rollup and a user might submit a
transaction to be forced before the upgrade because they disagree
with the change and want to exit before the upgrade. However,
because other transactions are in front of it (whether benignly or
maliciously added), their transaction will not be processed. Addi-
tionally, the L2 might censor the user’s transactions, preventing
the user from exiting before the upgrade.

These examples demonstrate severe issues with existing designs.
Notably, such an issue existed in the zkSync Era’s design (not in
production, as this mechanism has not been deployed yet), and we
have worked closely with them to adapt their design to fix the
issue. Our model presented in Section 4 is immune to the described

14https://medium.com/l2beat/introducing-stages-a-framework-to-evalua
te-rollups-maturity-d290bb22befe

https://alloy.readthedocs.io/en/latest/language/commands.html#run
https://medium.com/l2beat/introducing-stages-a-framework-to-evaluate-rollups-maturity-d290bb22befe
https://medium.com/l2beat/introducing-stages-a-framework-to-evaluate-rollups-maturity-d290bb22befe

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

rule guaranteedProcessing(env e) {

require forcedQueue.length > 0;

uint256 tx = forcedQueue [0];

finalizeState(e);

assert !forcedQueue.contains(tx);

}

(a) Certora rule encoding FQP1 for formal verification.

function testGuaranteedProcessing () public {

vm.assume(forcedQueue.length > 0);

uint256 tx = forcedQueue [0];

finalizeState ();

assert (! forcedQueue.contains(tx));

}

(b) Foundry (Forge) test encoding FQP1 as a property-based invariant.

Figure 4: Example of using Certora (a) and Foundry (b) to
express the Guaranteed Processing property (FQP1).

attacks. Finally, in Appendix A, we provide detailed statistics on
our alloy model and a detailed analysis of the performance and
scalability of our model.

5.2 Code-level Verification/Testing
In the previous section, we demonstrated how our formal model
aids in the high-level design verification of ZK-Rollup mechanisms.
Here, we propose an extension of this approach to the implementa-
tion level (smart contracts), illustrating how the properties defined
in Section 4, i.e., Forced Queue Properties (FQPs), Blacklisting Prop-
erties (BPs), and Upgradeability Properties (UPs), can be employed
to test actual smart contract implementations of these mechanisms.
Formal verification and property-based testing of smart con-
tracts. Formal verification tools like Certora [29] and property-
based testing frameworks such as Foundry [9] and Echidna [15] are
widely adopted in the DeFi ecosystem, with protocols like Lido and
AAVE utilizing them to ensure contract correctness [5]. Certora
allows developers to write specifications in the Certora Verification
Language (CVL), enabling the formal verification of smart contracts
against defined properties. Foundry and Echidna facilitate property-
based testing by generating a wide range of inputs to test contract
behaviors against specified invariants.
End-to-end analysis of ZK-Rollups. Our methodology involves
adapting the formally verified properties from our Alloy model
(FQPs, BPs, and UPs) to the smart contracts of a selected rollup.
These adapted properties are then verified/tested using frameworks
like Certora or Foundry. Given that Alloy has formally verified
these properties, any counterexamples found by the employed tool
indicate implementation bugs. This approach ensures the imple-
mentation aligns with the formally verified design, bridging the
gap between high-level specifications and practical deployment.

To illustrate, consider FQP1 (Section 4.3). This property ensures
that if the forced queue is non-empty and a new state is finalized,
then the head of the forced queue must be processed and removed.
For simplicity, consider a smart contract of a rollup with a queue
forcedQueue containing transaction IDs. Figure 4a depicts the rule
for Certora, while Figure 4b shows the invariant for Foundry. This
example demonstrates how Alloy properties can be translated into

formal verification rules or invariants, ensuring that implementa-
tions adhere to their specifications. In Appendix B, we explore more
potential future work of automating the whole process.
Analyze Scroll’s forced queue. Scroll implements only the forced
queue mechanism from the mechanisms presented in this paper.
Unlike our general model, Scroll’s implementation enforces the
forced queue only when a timeout occurs, i.e., when the head of
the queue has been delayed beyond a predefined threshold. At that
point, the rollup cannot progress until it processes the timed-out
forced queue messages. To accurately capture this behavior, we
extended our Alloy model by refining the forced queue proper-
ties (FQP) to encode timeouts and introducing four Scroll-specific
properties: (i) Rolling hash integrity to ensure correct hashing of
queued messages, (ii) Enforced mode activation to verify that en-
forced mode is triggered after a timeout, (iii) Mode consistency to
guarantee mutual exclusivity between enforced and normal modes,
and (iv) Fee payment to confirm that forced queue messages cover
their required fees.

We translated this adapted Alloy model into a property-based
testing suite using Foundry, implementing all specified properties
in approximately 1,000 lines of Solidity code. Each property was
encoded as an invariant checked after random operations, with
a total of 10,000 runs. No violations were detected in the forced
queue implementation of Scroll. The full adaptation and testing
process took three days, aided significantly by Scroll’s existing
support for Foundry-based unit tests and mock operations such as
batch proving and verification. The existing infrastructure was a
key reason for selecting Foundry over Certora.

6 Discussion
Alloy’s Bounded Scope and Security Guarantees. Alloy ex-
haustively explores all behaviours within a bound on object count
and trace length; success inside that window does not prove uni-
versal correctness [4]. It is therefore a powerful bug-finder, but
not a complete verifier. We ran the analyser with at most 10 ob-
jects (scope) and 10-step traces. This setting follows the small-
scope hypothesis, which holds that most design errors admit small
counter-examples [18, 19]. The flaw in Fig. 3 arises with a single
forced transaction and one upgrade event; adding a second queued
transaction reveals the subtler ‘blocked-exit’ scenario. To gauge
this approach, we injected five synthetic faults: four surfaced at
scope ≤ 5, the fifth at scope 8. This suggests a scope of 8 would
suffice, yet we conservatively used up to 10. Appendix A shows
how SAT-solver time grows exponentially with scope, reinforcing
the need to cap it. Importantly, our model may miss issues that
necessitate a larger scope to be manifested.
Analysing Further L2 Mechanisms. Our model focuses on mech-
anisms enforced by L1 contracts: forced queues, blacklisting, and
upgradeability, because thesemust remain correct regardless of how
the L2 is engineered; they are essential for a rollup to inherit the
security properties of its base chain. Other mechanisms that touch
multiple layers have not been analyzed. Withdrawals, for instance,
interact with both layers: an exit begins on L2 but is finalised on L1
only after the corresponding L2 transaction is settled, so modelling
them faithfully would require incorporating the bridge contract
and relevant L2 logic, an extension we leave to future work that

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

can build on prior bridge analyses [24]. Further, data-availability
guarantees, which depend on blob-space economics or external DA
layers, introduce complexities beyond our present scope. In short,
we prioritise L1-relevant mechanisms that must remain sound even
under a hostile L2; extending the model to cross-layer withdrawals
is a natural next step, while DA and sequencer-level protocols will
likely require different analyses.
Deployment Status and Practical Relevance of ZK-Rollups.
ZK-Rollups are no longer research prototypes: according to L2Beat
(July 2025), six of the ten largest rollups by TVL are ZK-Rollups,
together securing well over $3 billion in user assets15. The remain-
ing four are optimistic rollups, yet even optimistic rollups could
potentially move towards ZK proofs. For example, OP-Succinct
(Succinct Labs) aims to let existing optimistic stacks switch to valid-
ity proofs with minimal code changes. 16 Of the three mechanisms
we formalize, forced exits and timelocked upgrades are already on
every major rollup’s public roadmap; nevertheless, only Scroll has a
deployed forced-queue today (c.f., Section 5.2). The safe-blacklisting
mechanism is less ubiquitous but increasingly demanded by in-
stitutionally focused chains that require compliance; our analysis
shows that simple ‘on-the-spot’ blacklists could break liveness (Sec-
tion 5.1), while our model preserves user guarantees. In conclusion,
ZK-Rollups are widely deployed, the proposed mechanisms are on
the critical path for all of them, and the presented formal model has
already proven its practical value by uncovering potential issues
in the interactions between mechanisms and helping test critical
properties of a live system.

7 Related Work
Formal Methods for Web Security. Our work is inspired by
the seminal work of Akhawe et al. [1] on applying formal model-
ing to analyze the security of web mechanisms and applications.
Specifically, this work provides a formal model of the web platform
to dissect the security of various web mechanism designs using
Alloy. Their analysis included the specification of threat models
tailored for evaluating the security of web platforms. Analogously,
we crafted our analysis around the strongest conceivable adversary
(i.e., a malicious L2), examining rollup designs under this threat
model. Moreover, Akhawe et al. [1] established a set of broadly
applicable security goals and analyzed various security properties
for web applications. Similarly, we defined fundamental security
goals tailored for rollup users, defined security properties, and sys-
tematically evaluated different scenarios using Alloy. For those
interested in formal methods for security, the recent survey by
Kulik et al. [22] offers a detailed examination of formal methods
accessible to designers of security-critical systems.
Formal methods in blockchain and ZKPs. There is a growing
body of work verifying different aspects of blockchain, from smart
contracts to consensus algorithms and ZK proof generation. We
mention only some relevant work here. For smart contract verifi-
cation, existing research endeavors primarily aim to demonstrate
the absence of common vulnerabilities or rely on user-defined spec-
ifications to verify correctness. Notable surveys by Murray and
Anisi [27] and Garfatta et al. [10] offer comprehensive overviews of
15https://l2beat.com/scaling/summary
16https://github.com/succinctlabs/op-succinct

formal verification methods tailored for smart contracts. However,
it is important to note that our work diverges from this trajectory,
focusing instead on providing assurances regarding the design of
mechanisms implemented in smart contracts that operate rollups.

On the front of formal verification for Byzantine fault toler-
ance (BFT) in blockchain systems, seminal works by Tholoniat
and Gramoli [32] and Yoo et al. [38] have contributed significantly.
Regarding ZKPs, recent efforts have explored the verification of
verifiers for ZK-rollups [8]. Additionally, several initiatives have
focused on formally proving the absence of common bugs in ZK
circuits [6]. In contrast to those efforts, we focus on the design of
mechanisms that are complementary to ZKPs.

Rollup Security. Prior works have focused on qualitatively analyz-
ing optimistic and ZK-Rollups. Gorzny et al. [14] established a wish-
list of properties that an escape hatch mechanism (also known as a
forced queue) should possess to be considered trustworthy. Their
paper focuses on qualitative characteristics that escape hatches
should exhibit, such as executing arbitrary transactions, being sup-
ported by default in a rollup, and efficiency. In contrast, our paper
formally defines the security properties of escape hatches and ana-
lyzes various scenarios using Alloy, enabling the identification of
vulnerabilities in flawed designs.

In their recent work, Koegl et al. [21] presented nine main at-
tack threats for rollups, briefly describing potential attacks in both
optimistic and ZK-Rollups, such as censorship attacks, DoS attacks,
and client vulnerability risks. Our work extends some of these po-
tential attacks by formally modeling ZK-Rollups, presenting a clear
and strong adversary, and outlining the security properties neces-
sary to ensure a secure ZK Rollup design. Finally, complementing
our work, Gorzny and Derka [13] presented a framework to qual-
itatively evaluate existing rollups based on different dimensions:
familiarity, finality time, modularity, and maturity.

In comparison to the aforementioned works, we are the first to
formally specify the main properties of ZK-Rollups and analyze
various designs using Alloy, providing formal guarantees of the
security of specific ZK rollup designs. In essence, while prior works
provide generic qualitative directions, we have developed the first
tooling based on formal methods to help practitioners identify
potential issues in the security-critical mechanisms of rollups.

8 Conclusion
Rollups are heralded as the foremost solution to blockchain scalabil-
ity, collectively securing over $30 billion in value. However, recent
incidents have led to censorship and halting block production on
rollups. Despite these astronomical monetary amounts, the security
properties of rollups remain inadequately understood.

Our work introduces an extensible formal model for ZK-Rollups
that facilitates the design and evaluation of rollups’ critical mecha-
nisms and enhances the understanding of their security properties.
Using Alloy, a language used for modeling complex systems for
over a decade, we create models accessible to developers, security
auditors, and researchers, enabling automatic reasoning with rapid
results. We further show how the security properties defined in
Alloy can be used to verify or test the smart contracts implementing
rollup logic on-chain, using formal verification or property-based

https://l2beat.com/scaling/summary
https://github.com/succinctlabs/op-succinct

CCS ’25, October 13–17, 2025, Taipei, Taiwan Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits

testing. Our primary objective is to lay the foundation for creating
and advancing secure L2 solutions that are verifiably proven.

Acknowledgments
We would like to thank the anonymous CCS reviewers for their
insightful feedback on previous versions of the paper. D. Firsov was
supported by the Estonian Research Council grant no. PSG749.

References
[1] Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell, and Dawn Song.

2010. Towards a formal foundation of web security. In IEEE Computer Security
Foundations Symposium. IEEE.

[2] Barry Whitehat. 2018. Roll Up Token. https://github.com/barryWhiteHat
/roll_up_token. Accessed: 2024-03-19.

[3] Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto
Sonnino, et al. 2023. Sui Lutris: A blockchain combining broadcast and consensus.
arXiv preprint arXiv:2310.18042 (2023).

[4] Julien Brunel, David Chemouil, Aline Inacio Cunha, and Nuno Macedo. 2021.
Formal Software Design with Alloy 6. https://haslab.github.io/formal-
software-design/overview/index.html. Accessed: 2025-07-14.

[5] Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila
Galanopoulou, Arthur Gervais, Dimitris Mitropoulos, and Benjamin Livshits.
2024. Smart Contract and DeFi Security Tools: Do They Meet the Needs of Prac-
titioners?. In Proceedings of the International Conference on Software Engineering.

[6] Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad
Jahanara, and Benjamin Livshits. 2024. SoK:What don’t we know? Understanding
Security Vulnerabilities in SNARKs. arXiv preprint arXiv:2402.15293 (2024).

[7] Kelvin Fichter. [n. d.]. Why is the Optimistic Rollup challenge period 7 days?
https://kelvinfichter.com/pages/thoughts/challenge-periods/.

[8] Denis Firsov and Benjamin Livshits. 2024. The Ouroboros of ZK: Why Verifying
the Verifier Unlocks Longer-Term ZK Innovation. Cryptology ePrint Archive,
Paper 2024/768. https://eprint.iacr.org/2024/768 https://eprint.iac
r.org/2024/768.

[9] Foundry contributors. 2021. Foundry: Blazing fast, portable and modular toolkit
for Ethereum application development. https://github.com/foundry-rs/f
oundry. Accessed: 2025-04-14.

[10] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. 2021. A survey
on formal verification for solidity smart contracts. In Proceedings of the 2021
Australasian Computer Science Week Multiconference. 1–10.

[11] Javier Godoy, Juan Pablo Galeotti, Diego Garbervetsky, and Sebastian Uchitel.
2022. Predicate abstractions for smart contract validation. In Proceedings of the
25th International Conference on Model Driven Engineering Languages and Systems.
289–299.

[12] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge
Complexity of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing (STOC). Association for Computing
Machinery.

[13] Jan Gorzny and Martin Derka. 2024. A Rollup Comparison Framework. arXiv
preprint arXiv:2404.16150 (2024).

[14] Jan Gorzny, Lin Po-An, and Martin Derka. 2022. Ideal properties of rollup escape
hatches. In Proceedings of the International Workshop on Distributed Infrastructure
for the Common Good.

[15] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings of
the 29th ACM SIGSOFT international symposium on software testing and analysis.
557–560.

[16] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. Transactions
on software engineering and methodology (TOSEM) 11, 2 (2002).

[17] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

[18] Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs.
Commun. ACM 62, 9 (2019), 66–76.

[19] Daniel Jackson and Craig A Damon. 1996. Elements of style: Analyzing a soft-
ware design feature with a counterexample detector. ACM SIGSOFT Software
Engineering Notes 21, 3 (1996), 239–249.

[20] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security Symposium.

[21] Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka.
2023. Attacks on Rollups. In Proceedings of the International Workshop on Dis-
tributed Infrastructure for the Common Good.

[22] Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel Macedo, Steve
Schneider, Peter WV Tran-Jørgensen, and James Woodcock. 2022. A survey of

practical formal methods for security. Formal aspects of computing 34, 1 (2022).
[23] Bahareh Lashkari and Petr Musilek. 2021. A comprehensive review of blockchain

consensus mechanisms. IEEE access 9 (2021).
[24] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2023. Sok:

Not quite water under the bridge: Review of cross-chain bridge hacks. In 2023
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
1–14.

[25] Gianmaria Del Monte, Diego Pennino, and Maurizio Pizzonia. 2020. Scaling
blockchains without giving up decentralization and security: A solution to the
blockchain scalability trilemma. In Proceedings of the Workshop on Cryptocurren-
cies and Blockchains for Distributed Systems.

[26] Shashank Motepalli, Luciano Freitas, and Benjamin Livshits. 2023. SoK: Decen-
tralized sequencers for rollups. arXiv preprint arXiv:2310.03616 (2023).

[27] Yvonne Murray and David A Anisi. 2019. Survey of formal verification methods
for smart contracts on blockchain. In 2019 10th IFIP International Conference on
New Technologies, Mobility and Security (NTMS). IEEE, 1–6.

[28] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[29] Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson. 2025. Certora Technology

White Paper: Unveiling the Power and Limitations of Certora’s Smart Contract
Verification Technology. https://www.certora.com/blog/white-paper
Accessed: 2025-04-14.

[30] Dianxiang Sun, Wei Ma, Liming Nie, and Yang Liu. 2024. SoK: Comprehensive
Analysis of Rug Pull Causes, Datasets, and Detection Tools in DeFi. arXiv preprint
arXiv:2403.16082 (2024).

[31] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. 2022.
Blockchain scaling using rollups: A comprehensive survey. IEEE Access 10 (2022).

[32] Pierre Tholoniat and Vincent Gramoli. 2022. Formal verification of blockchain
byzantine fault tolerance. In Handbook on Blockchain. Springer, 389–412.

[33] Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro
Tsuchiya, Sebastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Bar-
czentewicz, et al. 2024. Blockchain censorship. In Proceedings of the ACM on Web
Conference.

[34] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019. SoK: Sharding
on blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies.

[35] Zhipeng Wang, Xihan Xiong, and William J Knottenbelt. 2023. Blockchain trans-
action censorship: (in) secure and (in)efficient?. In The International Conference
on Mathematical Research for Blockchain Economy. Springer.

[36] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014).

[37] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).

[38] Junghun Yoo, Youlim Jung, Donghwan Shin, Minhyo Bae, and Eunkyoung Jee.
2019. Formal modeling and verification of a federated byzantine agreement
algorithm for blockchain platforms. In 2019 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 11–21.

[39] Zeeve. [n. d.]. https://paragraph.xyz/@zeeve/a-holistic-view-of-
solutions-to-reduce-7-day-finality-in-op-rollups.

[40] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
Sok: Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2444–2461.

[41] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to
scalability of blockchain: A survey. Ieee Access (2020).

A Alloy Measurements

Mechanism Lines of No. of Solve time
code Clauses (sec)

Simple 295 1,814,483 63.603
Forced 529 3,633,032 89.623
Blacklist 721 5,461,695 152.688
Upgrade 970 6,149,438 125.703
Upgrade+Blacklist - 7,978,101 188.768

Figure 5: Various cumulative statistics for each rollup mech-
anism. The No. of Clauses and Solve time are for scope 5 and
10 steps.

https://github.com/barryWhiteHat/roll_up_token
https://github.com/barryWhiteHat/roll_up_token
https://haslab.github.io/formal-software-design/overview/index.html
https://haslab.github.io/formal-software-design/overview/index.html
https://kelvinfichter.com/pages/thoughts/challenge-periods/
https://eprint.iacr.org/2024/768
https://eprint.iacr.org/2024/768
https://eprint.iacr.org/2024/768
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://www.certora.com/blog/white-paper
https://paragraph.xyz/@zeeve/a-holistic-view-of-solutions-to-reduce-7-day-finality-in-op-rollups
https://paragraph.xyz/@zeeve/a-holistic-view-of-solutions-to-reduce-7-day-finality-in-op-rollups

Towards a Formal Foundation for Blockchain ZK Rollups CCS ’25, October 13–17, 2025, Taipei, Taiwan

1 2 3 4 5 6 7 8 9 10
Steps

10 1

100

101

102

103

104
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
) Scope 5

Scope 10

Figure 6: Log-scale graph of analysis time for 5 and 10 scopes.
The colored part depicts the variance across properties.

In this paper, we use Alloy Analyzer 6 to verify the invariants
and assertions of various L2 mechanisms. This involved adapting
our model for each ZK-Rollup mechanism and then systematically
testing them within the Alloy environment. The scope for our tests
was set up to allow us to specify more fine-grained bounds on each
type, but it does not imply any limitation on the overall number of
system states that can be explored. All experiments were performed
on a MacBook Pro Apple M1 Max CPU with 32 GB of RAM.

For each case, we quantified the number of new lines of Alloy
code written, the total number of clauses generated by the analyzer,
and the time to solve these clauses using an SAT solver. Figure 5
shows the lines of code required for each mechanism, the cumula-
tive number of clauses of the properties of each mechanism, and the
cumulative solve time in seconds for scope 5 and steps 1–10. The
complexity and the time required to solve the clauses increase with
more complex rollup mechanisms. Figure 6 depicts the running
time for different step values for scopes 5 and 10, demonstrating a
significant increase in the SAT solver time as the scope increases, as
well as the steps increase. The observed exponential growth is typi-
cal of SAT-based analyses. Finally, the colored area demonstrates
the variance between checking different properties.

B Model Extensions
In this section, we propose some potential extensions that can be
built on top of our model and could further enhance the state of
ZK-Rollups, by making our model more practical, modeling more
functionalities, and capturing different implementation details.
Enforcing Processing from the Forced Queue in Intervals.
While our model requires that every new block processed must
include a transaction from the forced queue if it is not empty, this
might be overly strict for practical implementations due to the asyn-
chronous nature of blockchain systems. A more practical approach
would be to enforce the processing of the head of the forced queue
every 3–5 blocks being finalized. This adjustment still offers the
same guarantees to users regarding eventual processing, but allows
for greater flexibility and efficiency in the system’s operation.
Modeling Optimistic Rollups. Optimistic rollups, which rely
on fraud proofs handled by the L1 for dispute resolution, present
a more complex scenario than our current model. Extending our

model to include optimistic rollups would involve formalizing the
fraud proof mechanism.
Analyzing Withdrawal Windows in Optimistic Rollups. Opti-
mistic rollups that have been deployed generally employ a seven-
day withdrawal period. Although numerous reasons exist for the
necessity of this duration [7], newer methods propose shortening
these periods. Nevertheless, the potential security compromises of
these more assertive suggestions [39] still require thorough exami-
nation.
Consideration of State Diffs vs. Transaction Inputs. To capture
more granular changes within blocks, our model could be extended
to differentiate between state diffs and complete transaction in-
puts. This would allow for a more detailed understanding of the
state transitions within the rollups, aligning more closely with how
changes are batched and processed in practical implementations.
Nevertheless, this should not change the properties described in
our model.
Introducing Data Availability and Expiration. Incorporating
data availability and expiration into our model could significantly
enhance its utility. This involves modeling how data is made avail-
able and the potential expiration or deletion of data, which is critical
for maintaining the integrity and accessibility of the rollup data
over time.
Associating Finalized States with Hashes Instead of Actual
Blocks. To address the potential disappearance of data (data avail-
ability issues), our model could be extended to associate finalized
states with hashes rather than actual block contents. This approach
would ensure that the system can still verify the integrity of the
data even if the actual data is no longer directly accessible.
Detailed Modeling of L1 Blocks and Finality. The model could
be extended to include detailed modeling of L1 blocks and their
finality,17 capturing how Ethereum’s finality mechanisms, impact
L2 operations. Formalizing how L1 reorgs affect L2s would provide
critical insights into how to design L2 systems to handle these
events safely.
Modeling L2 Operations Beyond Smart Contracts. Expanding
our model to include specifications of L2 operations and compo-
nents beyond just the smart contracts on L1 could provide a foun-
dation for designing L2 sequencers and other critical infrastructure,
such as the interactions between L2 sequencers and provers. This
would build upon the provided L1 model, offering a comprehensive
framework for the architectural design of L2 rollups.

In this work, we provide the fundamental missing formalization
and implement it in Alloy to provide guarantees about its correct-
ness. We believe that this base could be used as a framework to
analyze the design of critical mechanisms of L2 rollups.

17https://ethereum.org/en/roadmap/single-slot-finality/

https://ethereum.org/en/roadmap/single-slot-finality/

	Abstract
	1 Introduction
	1.1 Motivating Examples
	1.2 Paper Overview
	1.3 Contributions

	2 Background
	2.1 Blockchain Scalability and ZK-Rollups
	2.2 Formal Modeling of Software Design

	3 Threat Model and Goals
	3.1 Threat Model
	3.2 User-centric Security Goals

	4 Implementation in Alloy
	4.1 A Brief Introduction to Alloy
	4.2 Strawman ZK Rollup Model
	4.3 Forced Queue
	4.4 Forced Queue with Blacklisting
	4.5 Forced Queue and Upgradeability

	5 Leveraging Alloy Models for Testing Rollups
	5.1 Design-time Testing
	5.2 Code-level Verification/Testing

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Alloy Measurements
	B Model Extensions

